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Abstract: The failure modes-based optimization of structure is that the non-idea failure modes of structure 
transform into idea failure modes, which causes the probability of structure collapse is reduced. Therefore, a 
new optimal approach based on strong column–weak beam failure modes multi-levels optimization design is 
proposed. The procedure of multi-levels optimization design is that the first level minimizes the cost of 
concrete subject to elastic displacement constraint due to a minor earthquake, and the second level minimizes 
the cost of shaped steels and reinforced bars subject to constraints on inelastic displacement caused by 
moderate and severe earthquakes. Explicit forms of the objective functions and constraints in terms of member 
sizing variables are formulated to enable computer solution for the optimization model. And a six-story steel 
reinforced concrete frame structure is cited to illustrate the method.  
Keywords: frame structure; steel reinforced concrete; failure modes; Multi-levels Optimization 
 
 
1. Introduction 
 

In seismic design, the concept of strong column–weak beam and strong shear-weak bending is adopted by 
the existing design code, but most of the structures designed the code collapse with the destruction of columns 
under severe earthquake. Therefore, failure modes-based multi-levels optimization approach which the 
expected ideal failure modes of structure can be obtained is proposed. 

Steel Reinforced Concrete (SRC) frame is composed by composite material, and SRC structural members 
have a relatively small sectional dimension and a high bearing capacity, but the optimization is more difficult 
than the steel frame. In this paper, two single-criterion phases is decomposed, that minimizes the cost of 
concrete subject to elastic displacement constraint due to a minor earthquake, and minimizes the cost of shaped 
steels and reinforced bars subject to constraints on inelastic displacement caused by moderate and severe 
earthquakes [1].  

Optimum design solves optimal problems under certain preset conditions by applying computer and greatly 
improves economic benefit and design efficiency [2,3]. Accordingly, the sequential unconstrained 
minimization technique (SUMT) is used, which is an indirect method translating constraint optimization into 
an unconfined one. 
 
2 Failure Modes-Based Multi-levels Optimization 

 
2.1 Formulation of Objective Function.  

The design objective is to minimize the material cost and the structural failure modes. Therefore, the 
objective function can be expressed as 

1 2min F F F  .                                                            (1) 

1 1F f .                                                                   (2) 

2 1 2 2 3 3 4F f f f     .                                                      (3) 

where F  is the objective function; 1f  is the cost of concrete; 2f , 3f  are the expected structural damages, 
respectively; 4f  is the cost of steel. 1f , 2f , 3f  and 4f  need to adopt dimensionless expression for having 
different dimensional units [4]. 
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2.2 Procedure of Optimization Design.  
The process of entire optimization design is divided into two phases, which minimizes the cost of concrete 

subject to elastic displacement constraint due to a minor earthquake, and minimizes the cost of shaped steels 
and reinforced bars subject to constraints on inelastic displacement caused by moderate and severe earthquakes.  
2.2.1 Optimization of concrete.  

In the process of concrete optimization, it is assumed that the building is linearly elastic system under minor 
earthquake, and only the concrete works under minor earthquake. Therefore, the cost objective function of 
concrete can be expressed as   

1 1 1 1 max
1 1 1 1

/
pn n m

c c
ij,b ij,b ij,c ij,c

i j i j
f L A L A C C  
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where, 1  is concrete density; ij,bL  and ij,cL  are the length of beam and column, respectively; 1C  is the unit 
price of concrete;   is amplification coefficient; maxC  is the maximum cost obtained by experience; c

ij,bA  and 
c
ij,cA  are the concrete cross-section areas of beam and column, respectively; c

ij,b ij,b ij,bA b h ， c
ij,c ij,c ij,cA b h [5]. 

The Constraint Conditions are following [6, 7]:  
(1) Shear carrying capacity requirements of columns   
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(2) Lateral displacement requirements of columns   
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(3) Axial compression ratio requirements of columns   

 / 0.75i c ij,cN f A  .                                                         (13) 

(4) Requirements on height, width and ratio of height and width of column 

,300mm
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' '
, , ,0.25 2i c ij c ij c i i cV f b h V V  .                                                (15) 

(5) Shear carrying capacity requirements of beams 
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, , , ,
1 0.056i b c ij b o ij bV f b h


    .                                                 (16) 

,
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il bi
i b
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l
 .                                                             (17) 

(6) Requirements on height, width and ratio of height and width of beam 
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,

3 3
, ,1.4

ij,b ij cij b ij cb h b h .                                                         (18) 

, 300mmij bb  ， , 300mmij bh  ， , ,4ij b ij bh b .                                     (19) 
2.2.2 Optimization of steels.  
In the process of optimization of steels, the design process is decomposed into three phases. First of all, the 

reinforced bars quantities are defined as fixed value according to minimum reinforcement ratio of the members 
with the biggest cross-section and stirrup ratio. Second, an optimization that minimizes the interstory drift 
subject to displacement and shear constraint is involved under moderate earthquakes. Third, an optimization 
that controls the damage values of columns subject to the limit damage values and minimizes the cost of steel 
is involved under severe earthquakes. So the objective function of steel can be expressed as [8] 
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where n is number of stories; H and Hs are distances from the building ground level to roof and story S, 
respectively;  i and   are lateral translations of story S and the building roof at the reverse earthquake, 
respectively. And   is structure displacement under moderate earthquakes; Dij,b and Dij,c are the damage value 
of beam and column, respectively; 1  and 2  are the combination factors of beam and column, respectively; 

1 , 2  and 3  are the influence coefficient; ρ2 is steel density; s
ij,bA  and s

ij,cA  are the shaped-steel cross-
section areas of beam and column, respectively; C2 is the unit price of steel. 

It is assumed that the building is elastic-plastic system under moderate earthquakes, and the main 
Constraint conditions are following [7]: 
(1) Shear carrying capacity requirements of columns 
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where svA  is the cross-section areas of stirrups; svs  is range interval of stirrups; the max  in Eq.(9) is defined 
0.08 in this step. 
(2) Lateral displacement requirements of columns   
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(3) Requirements on range interval of stirrups: 
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(23) 

sv 100S                                                                   (24) 
(5) Requirements on the stirrup ratio: 

sv sv t yv/ 0.24 /A bS f f                                                       (25) 
It is assumed that the building is plastic system under severe earthquakes, and the main Constraint 

conditions are following: 
(1) Shear carrying capacity requirements of columns   
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where wt  and wh  are the web thickness and web height of shaped-steel, respectively; the max  in Eq.(9) is 
defined 0.16 in this step. 
(2) Lateral displacement requirements of columns   
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(3) Requirements on height, width and ratio of height and width of beam 
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(4) Deflection requirements of beams  
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where Dij,b and Dij,c are the damage value of beam and column, respectively; ,i l  is structure displacement 
under severe earthquakes; 0.7 and 0.6 are the damage values of beam and column respectively when plastic 
hinge appears, which are obtained by the test results of steel reinforced concrete frame structures; s  is the 
influence coefficient of deflection; f  and limf  are the practical deflection and limit deflection, respectively 
[9,10].  

2.2.3 Design variables.  
For this study, the sizes of the concrete and shaped steel cross-section of structural members are defined as 

the design variables. 
 
3. Mixing Penalty Function Method of Discrete Variables 
 

The failure modes-based multi-levels optimization design can be solved by using sequential unconstrained 
minimization technique (SUMT), which is an indirect method translating constraint optimization into an 
unconfined one. The following is its primary principles [11, 12]. 

The mathematic model of constraint optimization is written as 
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where  T1 2 n, , ,x x x X is decision-making vector;  f x is objective function vector; 

  0 ig X ,   0 jh X is constraint functions. 

Adding  g X  and  h X  to  f x , the original optimization question is translated into an equivalent 
unconfined one shown as 
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 , ,k kr tF X  is an artificial objective function, named as penalty function, and it is expressed as 

       
1 1
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where    iG g X ,    jH h X  are fonctionelles of  ig X  and  jh X respectively, a group of inequality 

constraint conditions and equality constraint conditions in regard to the original optimization question; kr  and 

kt  are called penalty factors or penalty parameters, which are adjusted according to increase of k ; 
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It is visible that value of  , ,k kr tF X  is usually larger than value of the original objective function  f x . 

In order to astringe penalty function  , ,k kr tF X  to the constraint optimum solution *x  of original question, 

the penalty must own the following character 
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which means penalty effect on penalty function will disappear gradually along with continuous adjustment of 
penalty factors, i.e. 

   lim , , 0k kk
r t


 F X f X                                                  (38) 

If objective function and constraint function are both continuous and differentiable, it is necessary to satisfy 
the following equation in gaining extreme point of penalty function, which is K-T condition for constraint 
extreme point. 
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Optimum question with both equality and inequality constraints can be solved by combining inner point 
method and outer point method, which is mixing penalty function method. 

When constraint conditions are ( ) 0i ≤g X  and ( ) 0j h X , the general expression of penalty function is as 
follows: 
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where kr  is a decreasing sequence of positive real number; kt  is an increasing sequence of positive real 

number, (0)X  is initial point; 1I , 2I  are two constraint sets. 
 In the optimization of practical structural engineering, parts even all of the design variables are often 

discrete variables, which can only take special and discrete values. This means will add several equation 
constraint conditions to mathematical model, so it can be solved by using mixing penalty function method. 

On the assumption that the number of discrete variables is l  in design variables, and the rest are continuous 

variables, in which discrete variables are given as  T
1 2, , ,d

lx x x  X , then penalty function can be 

expressed as 

         1, , ,k k k k i k j k ur t s r t s x        F X f x G g X H h X D                     (42) 

where kr  and kt  are the same as formula (42). On the right side of equation, the first item is original objective 
function; the second is punitive item of interior point method considering the constraint condition of 

  0i g X ; the third is punitive item of outside point method considering the constraint condition of 
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  0j h X ; the fourth is punitive item to assure specified discrete value for the design variables, ks  is penalty 
factor, which is an increasing sequence of positive real number.  

The items in penalty function are as follows 
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where   ( 1 ~ )uv uz v m  is discrete value of variable ux ; um  is the discrete value number of variable ux ; ux

 is the average value of uvz  and , 1u vz  , i.e.  , 1
1
2

u uv u vx z z   . 

 
4. Example of Failure Modes-Based Design 

 
As shown in Fig.1, a six-story and three-bay steel reinforced concrete framework is considered, and the 

design variables are shown in Fig.2. The known conditions are as followings: concrete strength grade is C30; 
steel grade is Q235; HPB235 is used for longitudinal reinforcement and stirrup; shaped-steel grade is HRB235; 
the price of concrete is 500 yuan per cubic meter; the price of shaped-steel is 3700 yuan per ton, the price of 
longitudinal reinforcement is 3000 yuan per ton, the price of stirrup is 2700 yuan per ton. 
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Fig.1 the plan of structure                        Fig.2 Three-bay steel reinforced 

                                                                                concrete framework 
 

Table.1  The cross-section of concrete by optimization 
Variable Ac

11,c–Ac
14,c Ac

21,c–Ac
24,c Ac

31,c–Ac
34,c Ac

41,c–Ac
44,c 

Concrete cross-
section(mm2) 550×550 550×550 500×500 500×500 

Variable Ac
51,c–Ac

54,c Ac
61,c–Ac

64,c Ac
11,b–Ac

13,b Ac
21,b–Ac

23,b 
Concrete cross-
section(mm2) 450×450 450×450 600×350 500×350 

Variable Ac
31,b–Ac

33,b Ac
41,b–Ac

43,b Ac
51,b–Ac

53,b Ac
61,b–Ac

63,b 
Concrete cross-
section(mm2) 500×350 450×350 450×300 450×300 

Unit mm 
Unit mm 
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In the first level of failure modes-based optimization, the min F1 can be obtained according to Eq.(4)-(19) 
and mixing penalty function method. And the results are shown in table 1.  

In the second level of failure modes-based optimization, the stirrup of columns are defined  8@120 
according to Eq.(23)-(25), and the stirrup of beams are defined according to code [7], 1 0.4  , 2 0.5   and 

3 0.1   are defined, then the min F2 can be obtained according to Eq.(20)-(33) and mixing penalty function 
method. And the results are shown in table 2. 

Table.2  The cross-section of shaped steel by optimization 
Variable As

11,c–As
14,c As

21,c–As
24,c As

31,c–As
34,c As

41,c–As
44,c 

Shaped steel cross-
section(mm2) HW458×417 HW458×417 HW428×407 HW414×405 

Variable As
51,c–As

54,c As
61,c–As

64,c As
11,b–As

13,b As
21,b–As

23,b 
Shaped steel cross-

section(mm2) HW400×408 HW400×400 HM488×300 HM482×300 

Variable As
31,b–As

33,b As
41,b–As

43,b As
51,b–As

53,b As
61,b–As

63,b 
Shaped steel cross-

section(mm2) HM440×300 HN390×300 HM340×250 HN396×199 

In the process of optimization design, equivalent-static pushover analysis is adopted, and the results are 
shown in Fig 3 according to Eq.(27)-(33).  
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Fig.3 Damage value under severe earthquake 

5. Conclusions 
 

Failure modes-based multi-levels optimization design is discussed in this paper, which the first level to 
optimize the concrete and the second level to optimize the steel supply an effective way to reduce both the 
damage and the cost of SRC frame structure. And the most important conclusion that can be drawn from the 
study is that the expected strong column–weak beam failure modes are obtained according to multi-levels 
optimization design. 
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